Binomial Theorem - Class XI

Past Year JEE Questions

Questions

Quetion: 01

The term independent of x in the expansion of

$$\left(\frac{1}{60} - \frac{x^8}{81}\right) \cdot \left(2x^2 - \frac{3}{x^2}\right)^6$$
 is equal to :

A. 36

B. - 108

C. - 36

D. - 72

Solutions

Solution: 01

Explanation

Given expression = $\left(\frac{1}{60} - \frac{x^8}{81}\right) \cdot \left(2x^2 - \frac{3}{x^2}\right)^6$

$$= \frac{1}{60} \left(2x^3 - \frac{3}{x^2}\right)^6 - \frac{x^8}{81} \left(2x^2 - \frac{3}{x^2}\right)^6$$

So its general term is

$$\mathsf{T}_{r+1} = \tfrac{1}{60} {}^6 C_r \big(2x^2\big)^{6-r} \big(-\tfrac{3}{x^2}\big)^r - \tfrac{x^6}{81} {}^6 C_r \big(2x^2\big)^{6-r} \big(-\tfrac{3}{x^2}\big)^r$$

=
$$\frac{1}{60}$$
 $^{6}C_{r}(2)^{6-}(-3)^{r}x^{12-4r} + \frac{1}{81}$ $^{6}C_{r}(2)^{6-}(-3)^{r}x^{20-4r}$(i)

For this term to be independent of x, put r = 3 in 1^{st} part and r = 5 in 2^{nd} part.

So from (i) the term independent of

$$x = \frac{1}{60} \times 2^3 \times (-3)^3 \times {}^6C_3 + \left(-\frac{1}{81}\right) (2)(-3)^5 \times {}^6C_5$$